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Abstract--Turbulent unstratified natural convection in a vertical slot geometry is computed by integrating 
the unsteady three-dimensional Navier-Stokes equations. In the simulations no turbulence model is 
required and all the essential scales of turbulent motion are resolved. A large multiprocessor distributed 
memory computer is used, with satisfactory parallel efficiency, to simulate problems with up to 5 million 
grid points. Steady statistics are computed for Grashof numbers of 64 800 and 180 000. The corresponding 
Nusselt numbers computed for the two cases are 2.22 and 3.36. Turbulence statistics are computed for 

each case. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

The various cases of natural convection in a slot have 
been studied extensively. If the slot walls are placed 
normal to the direction of gravity, the flow is referred 
to as Rayleigh-Brnard convection which is ubiquitous 
in the literature. If the slot walls are placed parallel to 
the direction of gravity, it is referred to as vertical slot 
convection. In between these two limiting cases there 
are arbitrary angle problems which have been studied 
in connection with solar panel design. 

In 1909 Nusselt performed the first experiment mea- 
suring vertical slot convection heat transfer. This 
experiment was followed by several others, most 
attempting to correlate the Nusselt number to the 
Grashof or Rayleigh number, the Prandtl number and 
the aspect ratio. Later, Eckert and Carlson [1] per- 
formed experiments using a Zehnder-Mach inter- 
ferometer to quantitatively image the vertical slot con- 
vection temperature field. They observed many of the 
important flow regimes common to vertical slot con- 
vection namely, the laminar conduction, transition, 
boundary layer, and travelling wave states. Appar- 
ently they did not observe the steady multicellular 
state but some turbulent states were observed. 

In two papers by Elder [2, 3] laminar and turbulent 
vertical slot convection experiments are reported. In 
the laminar studies, Elder observed the steady multi- 
cellular state and the tertiary flow which occurs 
between the secondary flow structures. In Elder's tur- 
bulence studies he discovered that in the turbulent 
region centered at about mid-height of the geometry, 
there is a complete absence of the vertical temperature 
gradient commonly associated with the laminar flow 
regions. In Elder's geometry, stratification played little 
if any role in the physics of the turbulent region even 

though the effect of stratification was considerable in 
the laminar flow regions. 

A more recent experimental paper by Chen and 
Wu [4] on vertical slot convection focused on the 
complication of temperature dependent viscosity. If 
this effect is taken into consideration, the anti- 
symmetry of the problem is broken, resulting in a host 
of effects such as displacement of instability toward 
the hot wall and greater stability near the cold wall 
along with new varieties of unsteady laminar insta- 
bilities. Even though these effects are interesting it is 
likely that air flows at temperature differences com- 
monly encountered would be affected very little by 
temperature-viscosity interactions and even less so 
when the flow becomes turbulent and mixing tends to 
make the temperature more uniform across the core 
of the flow. Chen and Wu also raise the important 
issue of the existence of three-dimensional unsteady 
laminar states in their paper. 

Stability of the simple one-dimensional conduction 
state for vertical slot convection has received some 
attention in the literature. Of the studies that have 
been conducted probably the most precise com- 
putations for the unstratified case were carried out by 
Ruth [5] who gives seven figure values for the critical 
Grashof numbers and four figure values for the most 
unstable spatial wave numbers over a range of Prandtl 
numbers. At a Prandtl number of 0.7, the critical 
Grashof number is 8041 and the most unstable wave 
number is 2.81, where both are normalized by the slot 
thickness. 

Perhaps the most complete set of stability cal- 
culations for the vertical slot problem to date is pre- 
sented by Bergholz [6]. In his calculations he con- 
sidered a range of Prandtl numbers and the influence 
of stratification. The effect of stratification can 
become important for many cases of the vertical slot 
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NOMENCLATURE 

~, unit normal vector in the x-direction 
Euo, E,.,., E~w one-dimensional energy 

spectra of fluctuating dimensionless 
velocity components 

,q gravitational acceleration 
Gr Grashof number, gfl AT( Y/2)~/v ~ 
Grv Grashof number, gfl A TY3,'v e 
t7 heat transfer coefficient 
k, x-wave numbers, Y~j/ )¢ , /= O, I. 2 . . . .  
k_ z-wave numbers, Ynj/Z, j = 0. I. 2 . . . .  
Nu Nusselt number, h( Y/2)/~, 
Nu~ Nusselt number, h Y/t, 
p dimensionless fluctuating pressure 

component 
Pr Prandtl number, v/ct 
t dimensionless time 
T time-averaged dimensionless 

temperature 
time-averaged dimensionless velocity 
dimensionless velocity vector 

U 
U 

m' dimensionless Reynolds shear stress 
u ~, r 2, w 2 dimensionless Reynolds normal 

stresses 
rl dimensionless velocity-temperature 

correlation 
.v. y, z dimensionless coordinates 
.Y length of periodic slot domain in x- 

dimension 
Y slot thickness in ),-dimension 

Z length of periodic slot domain in -- 
dimension. 

Greek symbols 
:~ thermal diffusivity 
fl thermal expansion coefficient 
A T temperature difference across slot 
O dimensionless temperature 
~, thermal conductivity 
v kinematic viscosity. 

problem. In particular, cases in which the aspect ratio 
of the enclosure is not large and the flow is laminar 
may have significant stratification effects. Cases other 
than these represent a large class of problems in which 
stratification plays a diminished role. 

Early calculations of two-dimensional steady ver- 
tical slot convection using a finite difference method 
were carried out by Elder [7]. In these solutions, the 
basic unicellular flow state for stratified convection in 
a rectangular enclosure with an aspect ratio less than 
or equal to four was calculated for various conditions. 
Elder speculated that a loss of stability in his numeri- 
cal scheme at higher Rayleigh numbers corresponded 
to experimentally observed secondary instabilities. De 
Vahl Davis [8] computed similar flows in a square 
enclosure with greater emphasis on the distributions 
of momentum source terms in the equations of 
motion. In Elder's paper [7] and De Vahl Davis' paper 
[8] the equations of motion were scaled using the 
Rayleigh and Prandtl numbers rather than the Gra- 
shof and Prandtl numbers. There has been some 
debate over the years as to which normalization is 
superior and it does not appear that an agreement has 
been reached on the subject. 

De Vahl Davis [8] noted that as the Prandtl number 
was increased (all other parameters held constant), his 
simulation method became increasingly stable. After 
examining the form of his motion equations it is likely 
that this increased stability is actually the result of a 
decrease in normalized momentum diffusion (Grashof 
number) since the Rayleigh number is held constant 
while the Prandtl number is increased. Therefore, the 
amount of normalized thermal diffusion in the solu- 

tion stays constant while the normalized momentum 
diffusion decreases leading to greater flow stability. 

Korpela et al. [9] performed finite difference simu- 
lations of vertical slot convection in a two-dimen- 
sional rectangular enclosure using a finite difference 
method for aspect ratios up to 20. In these calcu- 
lations, the equations were normalized using the Gra- 
shof number and the Prandtl number was held con- 
stant at 0.71. Results of the simulations were used to 
develop an expression for the optimal aspect ratio for 
a given Grashof number such that the Nusselt number 
is minimal. It is also noted in the paper that simulation 
of a very large aspect ratio would be of value when 
considering the heat transfer across double-glazed 
windows for commercial buildings. 

Lee and Korpela [10] extended the simulations of 
Korpela et al. [9] to various aspect ratios, several 
Grashof numbers, and three Prandtl numbers. In this 
paper, an aspect ratio of 25 was reached showing the 
development of a central region controlled by multi- 
cellular flow once the critical Grashof number is 
exceeded. This larger aspect ratio simulation was at 
Prandtl number of 7 and Grashof number up to 
40000. At such high values, it is possible that three- 
dimensional motions might exist rendering the two- 
dimensional model inadequate. 

EQUATIONS OF MOTION 

Figure 1 depicts the normalized physical domain for 
the simulations. Within this domain the mathematical 
model is the unsteady three-dimensional incom- 
pressible Navier-Stokes equations with constant ther- 
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X vibrations and natural kinetic fluctuations present in 
the laboratory flow. The perturbed flow must 'spin up' 
until it reaches a statistically steady turbulent state. 
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Fig. 1. Schematic diagram of the normalized physical 
domain. 

mophysical properties with the Boussinesq approxi- 
mation representing the buoyancy force term. 
Volumetric radiative heating of the gas is neglected. 
The dimensionless model equations are : 

V . U = O  (1) 

8 tU=  , 1  V 2 U _ V ( p + U ' U ~ + u × t o + ( ® _ I ) ~  
J6~ \ z / 

(e) 

(3) 
1 

St® = V 2 ® -  V" UO 
Prx/Gr 

where to = V x U. The boundary conditions are 

V(y = _ 1,t) = 0 (4) 

O(y = 1,t) = 0 (5) 

@(y= -- 1, t) = 1. (6) 

The remainder of the boundary conditions are 
periodic. Periodic boundary conditions require that 
the convection be unstratified since the time-averaged 
temperature along the direction of gravity is constant. 
The laminar initial conditions are : 

O(y, t = O) = ½(1 --y) (7) 

x/Gr 3 U(y, t = o) = - f f - ( y  - y ) ~ x .  (8) 

All equations are normalized using an inviscid con- 
vection velocity scale, x/[yflAT(Y/2)], a length scale 
equal to half the slot thickness, Y/2, and a linear 
temperature normalization such that the high tem- 
perature is one and the low temperature is zero. This 
scaling is assumed in this article unless otherwise indi- 
cated. 

In order to excite a turbulent state given a set of 
supercritical control parameters (Gr, Pr), a three- 
dimensional velocity or temperature disturbance must 
be added to the initial condition. This perturbation, 
which is on the order of 10 - 4  when compared to the 
basic state magnitude of 1, takes the place of  small 

NUMERICAL METHOD 

The model equations are approximated using the 
approach of Kim et al. [11]. Equations (1) and (2) 
are rewritten in a normal vorticity, toy, Laplacian of 
normal velocity, V2v, form. This transformation elim- 
inates the fluctuating pressure gradient term which is 
often expensive to compute. The time derivatives in 
the equations of motion are approximated using a 
third order semi-implicit Runge-Kutta  scheme [12]. 
The fourth order equation for normal velocity is 
rewritten as two second-order equations which are 
solved in the usual manner as a linear combination of 
a homogeneous solution and two particular solutions 
to satisfy the resulting two-point boundary value 
problem. 

The spatial derivatives are approximated using 
spectral basis functions constructed from complex 
Fourier series and Chebyshev polynomials. Boundary 
values are satisfied using Tau projection. The resulting 
linear systems are dense but can be reduced to tri- 
diagonal systems by reordering using recursion 
relations [13]. The standard convolution theorem 
approach is used to compute the spectral approxi- 
mations of the nonlinear terms using "3/2 rule" high 
frequency filtering to remove aliasing in the un- 
bounded directions. 

The computations were carried out on the Intel 
Touchstone Delta computer at Caltech. The Intel 
Delta computer has a distributed memory, message 
passing architecture. The unit processor is the Intel 
i860 CPU which has a theoretical peak computation 
speed of 80 MFLOPS for single precision calculations 
('well-written' Fortran code may achieve 10-30 
MFLOPS single precision). The CPUs are each situ- 
ated on a card with a high speed network processor 
and 16 MBytes of volatile memory. This card is 
referred to as an iPSC/860 numeric node. The con- 
figuration currently in use has 512 numeric nodes for 
a single precision theoretical peak machine speed of 
40 GFLOPS. The numeric nodes are arranged in a 
32 x 16 rectangular communication mesh with large 
mass storage units connected to various service nodes. 

The algorithm was chosen for these calculations as 
a result of its natural ability to be mapped onto a 
message passing architecture in addition to its ideal 
numerical properties. Every step in the above algo- 
rithm can be mapped onto the Delta computer in a 
way which requires an extremely small amount of 
communication between numeric nodes. The only 
exception to this optimal situation is the three-dimen- 
sional FFT  step. Since the algorithm and data base 
are mapped onto the numeric nodes in equal blocks of 
z-planes, the x- and y-direction transforms are entirely 
parallel. However, the z-direction transform requires 
that the entire data base be transposed across the mesh 
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Fig. 2. Parallel efficiency of the scaled algorithm running on 

the Intel Touchstone Delta computer. 

since the z transforms must be computed on a data 
structure which is stride one in order to be efficient. 
The transpose requires a global communication so 
that all numeric nodes involved in the simulation are 
sending and receiving data simultaneously thereby 
eliminating idle processor time. An algorithm for 
this transpose which performs satisfactorily on the 
rectangular mesh architecture is referred to as the opti- 
mal circuit switched algorithm [14]. 

Several timing cases with up to 128 numeric nodes 
were run to test the scaling behaviour of the algorithm 
implementation. Figure 2 shows the parallel efficiency 
of problems ranging in size from 456 192 to 57 065 472. 
The problem size is defined as three times the number 
of collocation grid points given that v, o L and ® must 
be computed at each grid point. The performance of 
the code on scaled problems is satisfactory with no 
apparent asymptote in performance reached by 128 
numeric nodes. Also shown are the performance of 
major components of the algorithm. An efficiency of 
one is ideal performance (perfect scaling). Efficiency 
is defined as the time to solution for a fixed number 
of time steps on a single numeric node divided by the 
time to solution of the scaled problem on multiple 
numeric nodes (each numeric node has a constant 
problem size). Counter-intuitively, the time advance- 
ment (linear solver) portion of the algorithm is more 
efficient when mapped onto larger numbers of 
numeric nodes. The overall parallel efficiency of the 
code is about 67% at 128 numeric nodes. 

RESULTS AND DISCUSSION 

Given the chosen Prandtl number, the convecting 
gas is assumed to be either dry air or nitrogen at an 
average temperature of about 300 K and a tem- 
perature difference of less than 20 K. Under these 

conditions, assuming dry air, volumetric radiative 
heating could account for as much as 0.7% of the 
total heat flux, surface to surface radiation could 
account for as much as 70% of the total heat flux, 
and convection would account for the remainder. The 
surface to surface radiation is uncoupled from the 
convection since it does not influence the gas or the 
isothermal boundary values. This estimated heat flux 
budget indicates that, in the case of dry air, neglecting 
volumetric radiative heating of the gas should result 
in less than a 3% flux deficit between the convection 
simulation and measured laboratory conditions. In 
the case of dry nitrogen, volumetric radiative heating 
could be ignored entirely. At these temperatures, 
assuming constant transport properties results in 
roughly a 1% error and the Boussinesq approximation 
has a truncation error of 0.1%. 

Neglecting the effects of volumetric radiative heat- 
ing and variable transport properties may have some 
minor influence on the calculated turbulence statistics, 
but computing these effects would have a substantial 
negative impact on the simulation's time to solution. 
Furthermore, since higher order terms in the body 
force expansion do not play a significant role under 
the given circumstances, use of the Boussinesq 
approximation is completely appropriate. 

Under the above conditions, the slot thickness 
would be about 4 cm for a Grashof number of 22 500. 
This represents a fairly large, low temperature physi- 
cal system, given the large aspect ratio required to 
minimize local stratification effects. If the surfaces can 
be maintained in an isothermal state for such a large 
system, the measurements are limited to the fully tur- 
bulent region, and the instrumentation is reasonably 
accurate and non-intrusive, laboratory measurements 
should be comparable to the turbulence statistics pre- 
sented herein. 

Simulations of turbulent flow were computed at 
Grashof numbers of 8100 and 22 500. In both cases 
the normalized physical domain had dimensions of 
- - 2 n < ~ x < ~ 2 n ,  - l ~ < y ~ < l ,  - n < ~ z < ~ n .  The 
Gr = 8100 case had a computational domain with 
84 x 65 x 64 modes and 128 x 65 x 96 grid points. The 
Gr = 22 500 case had a computational domain with 
128 x 1 2 9  x 1 2 8  modes and 192 x129 x192 grid 
points. 

The resolution of the grid is deemed adequate if 
the computed one-dimensional energy spectra extend 
over several energy decades. Figure 3 shows the spec- 
tra in the x and z wave numbers, respectively. The 
minimum energy span is more than five decades and 
the maximum energy span is more than 10 decades. 
The resolution in the y direction is higher than in the 
x and z direction, particularly so in the near wall 
region as a result of the cosine mapping of the grid 
points. This level of resolution is considered adequate 
to resolve the essential scales of the turbulent motion. 

To understand the mean properties of turbulent ver- 
tical slot convection, time-averaged statistics are com- 
puted. These include the mean velocity and tempera- 
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Fig. 3. One-dimensional energy spectra of the fluctuating velocity components. (a) x-spectra for Gr = 8100. 

(b) z-spectra for Gr = 8100. (c) x-spectra for Gr = 22 500. (d) z-spectra for Gr = 22 500. 

ture, the mean velocity and temperature gradients, the 
non-zero components of the Reynolds stress tensor, the 
velocity-temperature correlation, and the temperature 
variance. These statistics are sampled by time-aver- 
aging the space-averaged values on homogeneous y- 
planes. The sample size is effectively doubled again 
by taking either symmetric or antisymmetric averages 
about the y = 0 plane since all the statistics are required 
by the time-averaged equations to have symmetric or 
antisymmetric solutions. Although the time-averaged 
flow variables are either symmetric or antisymmetric, 
the time-dependent flow variables have no symmetry 
properties which can be exploited. 

The number  of time steps required to calculate con- 
verged turbulence statistics depends on which statistic 
is being computed and the number  of grid points in 
the y-planes. In the results presented here, a stationary 
state occurs after about  20 000 time steps and con- 
verged statistics required an addition 20000--27 000 
time steps to compute. Mean velocity and temperature 
profiles require fewer samples to converge than second 

order statistics. Normal  Reynolds stress components  
u 2 and w 2 and the Euu and E ~  spectra require the 
largest sample size to converge. CPU times required 
to compute converged statistics were about  26 h on 
64 processors for the Gr = 8100 case and about  120 h 
on 128 processors for the Gr = 22 500 case. 

Figures 4(a) and (b) show the time-averaged vel- 
ocity and temperature profiles for both Grashof  num- 
bers simulated. As expected, the velocity profile shows 
warm fluid rising and cool fluid failing with a flattened 
region in the slot center. The flattened region near 
the slot center is the result of  the mean momentum 
contributions of the Reynolds shear stress and the 
mean temperature. As the Grashof  number  rises the 
y-coordinates of maximum fluid speed move closer to 
the boundaries at y = - 1, 1. Mean temperature also 
behaves as expected with the center becoming flatter 
as the Grashof  number  increases. The flattened center 
region in this cases results from the action of the 
velocity-temperature correlation on mean thermal 
energy transport. 
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temperature gradient profiles: dashed, Gr~  8100; solid, Gr = 22 500. 

In the interest of establishing the trend at higher 
Grashof  numbers, the experimental time-averaged 
data of  Elder [3] has been added to Fig. 4(b). Very 
little comparable data was found in the literature sur- 
vey for the turbulent vertical slot convection problem. 
Existing comparable information in the literature is 
in the form of Nusselt number correlations and some 
time-averaged temperature data primarily at higher 
Prandtl numbers ( for  liquids). Turbulent vertical slot 
convection experiments, using dry air or nitrogen, col- 
lecting detailed turbulence statistics, represent a sig- 
nificant challenge, In particular, correlations involv- 
ing the fluctuating normal velocity component  such 
as uv and vt,  would be extremely difficult to measure. 
Curiously, these two correlations are central to under- 
standing the time-averaged transport of  momentum 
and heat across the vertical slot. 

Figures 4(c) and (d) show the time-averaged vel- 
ocity and temperature gradients. As the Grashof  num- 
ber increases the mean gradients of  the velocity and 

temperature move toward zero near the slot center 
while the magnitude of  the gradients increases near the 
slot walls. The value of  the normalized temperature 
gradient at the slot walls is the negative of  the Nusselt 
number defined by the half slot thickness scale. The 
second derivative of  the temperature gradient 
approaching zero at the slot wall indicates the exis- 
tence of  a viscous sublayer with a linear conduction 
heat transfer solution in the sublayer. 

Figures 5(a)-(c) show the normal Reynolds stress 
components u 2, v 2 and w 2. Most of  the energy is in the 
u 2 component followed by the w 2 and v 2 components. 
The v 2 component has a peak near the slot center and 
is weak near the slot walls. This indicates that the 
turbulence is primarily originating from the shear layer 
at the slot center as opposed to the boundary layers 
near the slot walls which are more stable. The hump 
which grows with increasing Grashof  number at the 
center of  the w 2 component may also indicate the domi- 
nance of the shear layer turbulence at the slot center. 



Turbulent unstratified natural convection 2491 

(a) 

e q  

0.5 

0.4 

0.3 

0.2 

0.1 

° . . *  . . . . . . . . . . . .  - . .  

-0.5 0 0.5 

Y 

(b) 0.1 

0 .08 

0 .06  

0 .04  

0 .02  

. . . .  i . . . . . . . .  i . . . .  

-0.5 0 0.5 

Y 

(c) 0 .15  . . . .  , . . . .  , . . . . .  . , . . 

0.1 

0 .05 

0 
- 1 - 0 . 5  0 0 . 5  

Y 
Fig. 5. (a) Normal Reynolds stress components, u 2 : dashed, 
Gr = 8100; solid, Gr = 22 500. (h) Normal Reynolds stress 
components, v2: dashed, Gr = 8100; solid, Gr = 22 500. (c) 
Normal Reynolds stress components, w 2 : dashed, 

Gr = 8100; solid, Gr = 22 500. 

The Reynolds shear stress component ,  uv, and the 
veloci ty-temperature correlation, vt are shown in 
Figs. 6(a) and (b). These two components  are active 
in the time-averaged equations of  mot ion : 

dy  d y  = x /Gr  uv - -  (T--½) d)7 
"= --J L d.~= - - I  

where 

(9) 

dT  {d_~ = Pr4Gr(vt) (10) 

N u =  - (11) 
v ~ I 

The Nusselt numbers and the mean velocity gradi- 
ents at the slot walls are given in Table 1 normalized 
by the half  slot thickness and, more traditionally, by 
the entire slot thickness. The computed Nusselt num- 
bers are about  25% higher than commonly available 
correlations suggest but it is important  to note that 
the correlations used are for aspect ratios less than 40. 
Since smaller aspect ratio enclosures have a turbulent 
region confined near the slot center away from the 
slot edges, the large laminar surrounding region would 
reduce the overall Nusselt number of  the slot. The 
Nusselt numbers computed here should only be com- 
pared to Nusselt numbers measured locally in the 
turbulent region. 

Useful relations can be derived from equations (9) 
to (11) by assuming the form of  the asymptotic solu- 
tion at sufficiently high Grashof  and Prandtl  numbers. 
Using the temperature data and observations of  Elder 
[3] at Gr -- 4.1 × 106 and Pr  = 7, and the implications 
of  the calculations presented here, I assume that the 
mean velocity and temperature gradients are 
approaching zero at the slot center, then the relations 
follow : 

(12) 

mu ~ Pr~/Gr(vt)y=O. (13) 

F rom these relations the shear stress at the slot walls 
can be estimated from a measured temperature profile 
and Reynolds shear stress at the slot center, and the 
velocity-temperature correlation at the slot center can 
be estimated from a measured Nusselt number if the 
Grashof  and Prandtl numbers are sufficiently high. 

The variance of  the fluctuating temperature is 
shown in Fig. 6(c) to illustrate the region of  strongest 
advective mixing with corresponding peaks and the 
depression in the slot center which results from the 
damping effect of  thermal diffusion. Higher Prandtl  
number fluids would presumably have stronger tem- 
perature fluctuations in the slot center. In the limit of  
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Fig. 6. (a) Reynolds shear stress components, ur: dashed, 
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Table 1. Computed Nusselt number and boundary velocity 
gradient for Pr  = 0.71 

Gr (Gry) 8100(64 800) 22 500(180 000) 
Nu (Nuv) 1.11 (2 .22)  1.68(3.36) 
dU/dy (d U/dyv) 7.38(10.4) 8.56(12.1) 

infinite Prandtl number the temperature probability 
distribution function is bimodal with temperature 
samples occurring only at zero and one with resulting 
intense temperature fluctuations. Zero Prandtl num- 
ber would lead to zero temperature fluctuations every- 
where. 

Instantaneous turbulent flow structures can be vis- 
ualized using isosurfaces of  scalar variables. In Fig. 
7(a) an isotherm at 19 = 1/2 is shown for the 
G r =  8100 case (visualized at an angle and in per- 
spective for clarity). The two transparent gray planes 
represent the boundaries of  the computational  
domain with the cool wall represented by the front 
plane with the x-axis directed upward along the long- 
est side of  the domain. Figure 7(b) shows the same 
isotherm for the G r  = 22 500 case. The increase in the 
number of  flow scales is obvious and the isotherm has 
appendages which penetrate closer to the slot walls. 

The G r  = 22 500 case also exhibits closed loops in 
its isotherms such as the one shown on the lower right- 
hand side of  Fig. 7(b). These closed loops always seem 
to align in the average flow direction at this Grashof  
and Prandtl number and are distorted as they advect 
with the flow stream. Observations suggest that these 
loops are formed when a sufficiently energetic counter- 
rotating vortex pair in the mixing layer aligned in the 
mean flow direction forces fluid from the slot center 
toward a slot wall. As the fluid ejected away from the 
center approaches the slot wall, the structure thins and 
stretches creating a local high z-direction temperature 
gradient behind the structure. Since the Prandtl num- 
ber is moderate the high temperature gradient diffuses 
away forming the closed loop in the isotherm. The 
G r  = 8100 case seems to lack the advective energetics 
required to form these closed loops. 

CONCLUDING REMARKS 

Unstratified turbulent natural convection in a ver- 
tical slot can be accurately simulated using direct 
simulation methods. Although the physics of  laminar 
flow states are often complicated by stable strati- 
fication, experimental evidence strongly suggests that 
stratification is not  physically significant for the tur- 
bulent flow state [3]. Even so, it is possible that in 
laboratory enclosure flows, stable stratification might 
delay the onset of  turbulence to a somewhat higher 
Grashof  number than expected in these calculations. 
Once a fully turbulent region is formed near the slot 
center, the stable stratification would relax in the tur- 
bulent region as a result of  an initially strong stream- 
wise ve loc i t~ tempera ture  correlation. If the Grashof  
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Fig. 7. Ins tan taneous  isotherms, 0 = 1/2: (a) Gr = 8100; (b) Gr = 22 500. 
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number  is reduced to a lower value at  tha t  point ,  
one might  expect subcritical turbulence to persist and  
stable stratification to remain  absent  since hysteresis 
in t ransi t ional  flows is common.  

For  a Prandt l  n u m b e r  of  0.71, the shear layer at  the 
slot center t ransi t ions  to a turbulent  state first with 
the boundary  layer becoming turbulen t  at  a more 
elevated G r a s h o f  number .  The existence of  relatively 
thick laminar  flow layers adjacent  to the slot walls is 
evident in bo th  the ins tan taneous  solution and  the 
turbulent  flow statistics for the G r a s h o f n u m b e r s  com- 
puted. One might  expect to see more  significant tur- 
bulent  bounda ry  layer effects at  higher  G r a s h o f  num- 
bers. 

Fur ther  calculat ions exploring the effects of  weak 
stratification on the streamwise veloci ty- tempera ture  
correlat ion would cont r ibute  some unders tand ing  of  
the mechanism which relaxes stable stratification in 
the tu rbulen t  flow. Calculat ions at  a higher G r a s h o f  
number  would help establish the high G r a s h o f  num- 
ber trends suggested by equat ions  (12) and  (13). And 
finally, calculat ions at  a rbi t rary  angles with respect to 
gravity would shed light on  the turbulence propert ies  
of  the unsymmetr ic  cases. 
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